Свободные радикалы. антиоксиданты против свободных радикалов
Содержание:
- Признаки негативного воздействия
- Свободные радикалы: откуда же они берутся
- Защита – в антиоксидантах
- Свободные радикалы и антиоксиданты
- Что такое свободные радикалы?
- Свободные радикалы что это такое
- Что такое свободные радикалы?
- Долгоживущие свободные радикалы
- Свойства радикалов
- Вред
- Случаи, когда особенно нужны антиоксиданты
- Как защититься от воздействия свободных радикалов
- Строение и стабильность
- Что такое свободные радикалы
- Свободные радикалы в организме человека наносят вред
- Вред, наносимый здоровью
- Свободные радикалы в организме и их польза
- Как нейтрализовать вредное действие свободных радикалов
Признаки негативного воздействия
Первыми признаками, отражающиеся на человеке, является появление быстрой утомляемости, нарушения режима сна, легкая подверженность стрессовым состояниям, нарушение концентрации внимания, ухудшение памяти. Если один из этих признаков или их сочетание наблюдается, значит свободные радикалы в организме человека превышают допустимые нормы и необходимо срочно принимать меры и употреблять в пищу продукты питания, являющиеся антиоксидантами, а также принимать настойки и отвары растений, способных выводить свободные радикалы из организма. Наиболее известным и эффективным средством в борьбе со свободными радикалами является употребление зеленого чая. Учеными установлено, что зелёный чай из пакетиков более эффективен, чем заваривание крупнолистового. К таким полезным напиткам относится и гранулированный кофе, который мало уступает по своей эффективности зеленому чаю.
Зимой не стоит отказываться от потребление в пищу салатов. Нехватка свежих овощей и фруктов легко может восполнить широкий ассортимент зимних продуктов. При этом максимально необходимо использовать возможность употребления их и сыром виде, не подвергая тепловой обработке, при которой значительное количество витаминов улетучивается, а значит и ценность потребляемой пищи также снижается.
Особенно в зимний и весенний период необходимо в достаточном количестве получать вместе с пищей антиоксиданты. Употребление большого количества салатов, составленных из зимних овощей и фруктов, а также первой зелени, доступной в продаже, восполнит дефицит. Уже в конце весны и начале лета необходимо максимально заполнить свой рацион различной зеленью и свежими овощами, собранными с нового урожая. Не забывая при этом употреблять как можно больше ягод и фруктов, а также дополнительно включать в ежедневный рацион употребление витаминных комплексов и добавок, которые усилят эффект и избавят организм от негативного воздействия свободных радикалов.
Свободные радикалы: откуда же они берутся
Зарождается свободный радикал во время естественных процессов, происходящих в организме. Клетка дышит, питается, делится, используя незаменимый химический элемент – кислород. Именно он даёт нам могучую энергию, окисляя разнообразнейшие органические соединения, которые мы получаем с пищей. Но, параллельно, он окисляет молекулы до суперактивной формы, делая их нестабильными.
То есть, наш организм в процессе своей жизнедеятельности постоянно производит свободные радикалы.
Но мы каждый день читаем в соцсетях, слышим от знакомых и узнаём из телепередач о детях и достаточно молодых людях с серьёзными заболеваниями. Их первопричина – это огромное количество свободнорадикальных агрессоров, с которыми растущий организм не в силах справиться. Когда же они успели «нажить» их в свои то годы?
Ответ очевиден: свободные радикалы поступают в организм извне.
Учёные, исследующие пути попадания оксидантов в тело человека, выделяют несколько основных:
- радиационное излучение. В эту группу входит не только обычное рентгеновское облучение во время обследований. Доказано опасное радиационное воздействие строительных материалов, особенно асбеста и шлакоблоков. Также источниками излучения являются микроволновки, смартфоны, телевизоры, телефонные вышки;
- ультрафиолетовые лучи, если они в избытке;
- курение, как активное, так и пассивное;
- выхлопные газы и дым от химических и строительных заводов;
- неправильное питание, — когда мы едим слишком много жареного, жирного, копчёностей, сладостей;
- пищевая химия – это различные пищевые красители, усилители вкуса и запаха, консерванты: знаменитые Ешки на упаковках;
- бытовая химия: стиральные порошки и гели, некачественные средства гигиены;
- неконтролируемый приём антибиотиков, снотворных, антидепрессантов, гормональных и других лекарственных препаратов.
Что касается образования свободных радикалов самим нашим организмом, то к резкому скачку их роста приводят различные бактериальные и вирусные инфекции, а также стрессы.
Защита – в антиоксидантах
Вспоминаем, что такое антиоксиданты. В эту систему входят витамины и минералы. Посмотрим, какие же витамины показаны для инактивации свободных радикалов:
- Витамин А – жирорастворимый, защищает клеточные мембраны в головном мозге.
- Витамин С – водорастворимый антиоксидант, работает в жидкости вне клеток.
- Витамин Е – жирорастворимый, и его работа – защищать клеточные мембраны от окисления жиров.
- Антациноиды – действуют омолаживающе, снимают воспаление
- Ликопин – приводит в порядок холестерин.
- Лютеин – налаживает зрение.
- Флаваноиды – укрепляют сосуды.
- Танины – снимают воспаление, останавливают кровотечение и диарею.
Свободные радикалы и антиоксиданты
Антиоксиданты – это молекулы, которые по доброй воле делятся своим электроном со свободным радикалом, чтобы нейтрализовать его. При этом они преобразуются в свободный радикал: теряя электрон, антиоксидант теряет стабильность.
Но, родившийся таким способом новый оксидант живёт гораздо меньше, чем его предшественник, и становится малоактивным либо вообще неактивным. Соответственно и ущерб от него практически сводится к нулю.
Однако, антиоксидант можно вернуть в работу, восстановив утраченную часть. Они очень эффективно работают группами. Когда один из них теряет свой электрон, другой делится с напарником. Доказано, например, что молекула витамина С восстанавливает повреждённую клетку витамина Е. В таком случае, молекула антиоксиданта не теряет своей стабильности.
Так наш организм борется с постоянно создающимися в процессе клеточного дыхания свободными радикалами.
Виды антиоксидантов
По происхождению антиоксиданты бывают ферментными и неферментными.
Ферментные антиокислители создаются внутри нашего организма и представляют собой важнейший элемент «встроенной» антиоксидантной защиты. Наиболее изученные это супероксиддисмутаза, каталаза и пероксидазы.
Ферментные антиоксиданты создают хитрые химические реакции, в ходе которых нестабильные агрессивные клетки преобразуются в безобидные, а сами антиоксиданты остаются неизменно устойчивыми.
Неферментные антиоксиданты мы получаем из продуктов, трав и специй. Самые известные из них:
- витамины: С, Е, А, коэнзим Q10, ликопин, группа витаминов В, РР, витамин К;
- флавоноиды: кверцетин, рутин, апигенин, ресвератрол, танины, катехины;
- аминокислоты: L-Аргинин, цистин, пролин, метионин, глутамин, таурин;
- микроэлементы: селен, цинк, железо, медь, сера.
По способу растворения антиоксиданты делятся на две подгруппы: гидрофильные – растворимые в воде и липофильные – растворимые в липидах.
Водорастворимые защищают плазму крови и клетку от окисления изнутри. Жирорастворимые оберегают от повреждения внешнюю оболочку клетки – мембрану.
Если своих антиоксидантов у нас недостаточно, то получается лавинное повреждение органов и систем организма. Чтобы этого не допустить, мы должны повысить количество своих «защитников», получая их из внешних источников.
Что такое свободные радикалы?
Свободный радикал — это атом или группа атомов, которые содержат по крайней мере один непарный электрон. А если электрон непарный, другой атом или молекула с лёгкостью присоединяются к нему. Возникает химическая реакция, способная принести большой вред организму.
Свободные радикалы обычно присутствуют в организме в небольших количествах, и здоровый организм контролирует их. Некоторые свободные радикалы производятся иммунной системой. Они разрушают вирусы и бактерии. Другие свободные радикалы участвуют в производстве важных гормонов и активизации необходимых для жизни ферментов. Свободные радикалы нужны организму для производства энергии и разнообразных субстанций, в которых он нуждается.
Образование множества свободных радикалов стимулирует образование ещё большего их количества, а это ведёт к ещё большему ущербу для организма. В результате присутствия опасного количества свободных радикалов может измениться способ кодирования клетками генетической информации, нарушится структура белков. Иммунная система распознаёт такие белки как чужие и постарается их уничтожить. В конечном итоге мутировавшие белки испортят иммунную систему, что приведёт к лейкемии и другим типам рака, к сердечным и другим заболеваниям.
Свободные радикалы способны разрушать защитные клеточные мембраны, могут приводить к накоплению жидкости в организме, что способствует быстрому старению организма. Кроме того, при этом нарушается уровень кальция в организме, что также приводит к различным заболеваниям.
К возникновению свободных радикалов приводят различные факторы, а именно: радиационное облучение, длительное облучение солнцем, загрязняющие окружающую среду вещества — табачный дым и автомобильные выхлопные газы, богатая жирами диета.
Свободные радикалы что это такое
У радикалов есть другое название — АФК (активные формы кислорода), так называют их в России. Как образуются агрессивные молекулы. С химической точки зрения, кислород, вступая в реакции внутри организма, может преобразоваться в активную форму. Всем известно, что вокруг атома кислорода, вращаются парные электроны.
В процессе химических реакций, молекула кислорода может присоединить к себе дополнительный электрон или отдать имеющийся. В результате у него один электрон получается непарным, вот и появляется опасная конструкция молекулы-хищника, которая будет стремиться восполнить свою потерю, превращая соседние молекулы в подобные себе, если успеет. Поскольку радикальные соединения существуют не долго.
Но парадокс заключается в том, что воздух, с большим содержанием кислорода, который так необходим для жизни, наносит с каждым вдохом, своеобразный удар по нашему здоровью. Ведь агрессивный кислород образуется в процессе дыхания, как сопутствующий элемент, участвующий в процессе обмена.
Но в то же самое время, если этот процесс выходит из под контроля иммунной системы, то начинается постепенное закисление организма, которое учёные сравнивают с образованием ржавчины на железе. Чем больше радикалов, тем больше закисление и тем большее старение.
Вдыхаемый воздух и свободные радикалы
Дыхание является необходимым процессом для жизнедеятельности человека. В воздухе, которым мы дышим, содержится 20% потребляемого организмом кислорода. Для чего нужен кислород?
С его участием проходят окислительно-восстановительные реакции, метаболические процессы, в которых пища перерабатывается до энергии. Но 2% от поступающего кислорода преобразуются в активную форму, разрушающую здоровые клетки.
Вот поэтому-то и появляются нарушения, ослабления, заболевания, обострения, патологии и недуги, ведущие к старению организма.
Поэтому, как бы сам собой напрашивается вывод, что эту армию агрессоров здоровья, надо нейтрализовать. Что предпринять, об этом читайте ниже.
Что такое свободные радикалы?
Атомы в молекулах соединены химическими связями. Каждая связь представляет собой пару электронов. Если по какой-то причине такая связь рвется, у каждого атома остается одиночный электрон. Получившаяся частица – молекула, один из атомов которой имеет неспаренный электрон — и называется свободным радикалом.
Как сохранить антиоксиданты
Больше всего антиоксидантов содержится в свежих яблоках и помидорах, брокколи и шпинате, тыкве и моркови – и другой растительной пище. Однако овощи часто подвергаются термообработке, которая их разрушает. Узнайте, как сохранить антиоксиданты в овощах.
Свободные радикалы очень активны и стремятся вернуть потерянный электрон любой ценой. Чаще всего они разрывают связь в какой-нибудь другой молекуле, присоединив себе один электрон из пары. Так образуется новый свободный радикал, который тоже стремится вернуть себе электрон. Череда превращений называется цепной реакцией.
Самый распространенный процесс, идущий по подобному пути – это бурное окисление, которые мы знаем как горение. В свое время за открытие свободнорадикального механизма горения и теорию цепных реакций наш соотечественник Николай Семенов получил единственную на СССР и Россию Нобелевскую премию по химии.
Долгоживущие свободные радикалы
Долгоживущие свободные радикалы отличаются от короткоживущих тем, что неспаренный электрон в них сильно делокализован, а реакционный центр окружён объёмными заместителями, которые создают пространственные затруднения и понижают реакционную способность этого центра. Получают их различными химическими реакциями, в том числе реакциями одноэлектронного переноса и реакциями без затрагивания радикального центра.
Типичными представителями этого класса свободных радикалов являются арилметильные радикалы. Некоторые из них являются устойчивыми при комнатной температуре окрашенными кристаллическими или аморфными веществами, содержащими около 6·1023 спин/моль неспаренных электронов. Например, так называемые инертные радикалы (C6Cl5)2C•Cl, (C6Cl5)3C•, (C6Cl5)2C•C6H4OH имеют оранжево-красный цвет и плавятся при высокой температуре.
Димеризация трифенилметильного радикала
В растворах эти радикалы существуют в равновесии с молекулами-димерами. На положение этого равновесия, то есть на соотношение радикала и димера, влияет сольватация, а также электронные и пространственные эффекты. Первоначально считалось, что димеры имеют структуру гексаарилэтанов, но позже было показано, что они имеют хиноидную структуру.
Радикал | Степень диссоциации, % | Радикал | Степень диссоциации, % |
---|---|---|---|
Ph3C• | 2 | трет-Bu(п-PhC6H4)2C• | 74 |
(п-PhC6H4)Ph2C• | 15 | (Ph2C=CH)Ph2C• | 80 |
(β-C10H7)3C• | 24 | (п-PhC6H4)3C• | 100 |
(α-C10H7)Ph2C• | 60 | (Ph3C)Ph2C• | 100 |
Ароксильные радикалы также относятся к долгоживущим, хотя они быстро реагируют с кислородом, поэтому работа с ними требует инертной атмосферы или вакуума. Они образуются как промежуточные соединения при окислении фенолов. В чистом виде выделены гальвиноксильный радикал с т. пл. 158 °С и индофеноксильный радикал с т. пл. 136 °С.
Гальвиноксильный радикал |
Индофеноксильный радикал |
1,3,6,8-Тетра-трет-бутил-9-карбазильный радикал с т. пл. 145 °С
Существует ряд долгоживущих радикалов, у которых радикальный центр находится на атоме азота. Так, аминильные радикалы, устойчивые при 25 °С, получают окислением вторичных аминов. Особенной устойчивостью обладают вердазильные радикалы, являющиеся одними из самых стабильных органических парамагнетиков. Их период полуразложения на воздухе при комнатной температуре может составлять многие годы.
Нитроксильные радикалы по строению схожи с оксидами аминов. Радикальный центр в них находится на атоме кислорода, соединённом с атомом азота. Некоторые нитроксильные радикалы очень устойчивы даже несмотря на то, что неспаренный электрон в них не подвергается делокализации. Известным примером такого устойчивого радикала является тёмно-красный 2,2,6,6-тетраметилпиперидин-1-оксил (TEMPO) с т. пл. 38 °С. Существуют, однако, и иные структуры, где делокализация неспаренного электрона хорошо выражена, а реакционный центр окружён объёмными заместителями.
Иминоксильные радикалы имеют общую формулу RR’C=NO•. Благодаря наличию двойной связи они могут существовать в виде цис— и транс-изомеров.
Свойства радикалов
Чаще всего радикалы являются реакционноспособными частицами, которые в течение короткого времени вступают во взаимодействие как с другими веществами в системе, так и друг с другом.
Взаимодействие может включать:
- передачу радикального центра
- развитие цепной реакции с возникновением новых радикалов
- гибель радикалов
- соединение радикалов друг с другом (рекомбинация).
Стабильные радикалы
Существуют радикалы имеющее значительное время жизни, до распада или рекомбинации. Если это время измеряется минутами или большими отрезками времени говорят о «стабильных» радикалах. Такие радикалы есть как в неорганической, так и в органической химии. Некоторые из них могут храниться годами без разложения или рекомбинации.
К неорганическим стабильным радикалам относят NO, NO2, ClO2, O3 и некоторые другие вещества.
В органической химии разнообразие стабильных радикалов значительно больше. Выделяют следующие группы стабильных органических радикалов:
- углеводородные (трифенилметил, радикал Гомберга и др.)
- нитроксильные (бис(трифторметил)нитроксил, ТЕМПО и др.)
- вердазильные
- ароксильные
- аминильные
- гидразильные
Вред
При избыточном содержании радикалов их терапевтическое воздействие обращается в другую сторону. Организм перестает контролировать деятельность молекул, потому те хаотично перемещаются, вызывая различные заболевания. Большое число радикалов приводит к таким последствиям, как:
- повреждение здоровых клеток;
- мутация ДНК;
- гиповитаминоз;
- развитие онкологических заболеваний;
- ускорение старения организма;
- падение иммунитета;
- разрушение коллагена (приводит к потере эластичности кожных покровов);
- бесплодие;
- нарушения биохимических реакций;
- появление морщин, пигментных пятен;
- ухудшение защитных свойств организма;
- инфаркт миокарда;
- ишемические повреждения мозга;
- ослабление мышц, скелета;
- ухудшение слуха;
- физиологическое разрушение тканей, органов;
- болезнь Альцгеймера.
Радикалы разрушают целостность мембраны, лишая клетку ее защиты. Это приводит к накапливанию лишней жидкости, повышению уровня кальция. Кроме вышеперечисленных последствий появляется риск развития бесплодия, сахарного диабета, почечной, печеночной недостаточности. Особенно опасны активные молекулы для людей пожилого возраста.
Случаи, когда особенно нужны антиоксиданты
Болезни
Хронические ли, острые – не важно. Любое воспаление, гниение – это разрушенные клетки
А где разрушение, там свободная электронная пара.
Старение. Как бы мы ни старались избежать этого, так или иначе, со временем всё больше тканей увядают, теряют жизнеспособность, разрушаются. Потому-то вся антивозрастная косметика содержит антиоксиданты для защиты от радикалов. В косметологии знают, что это такое.
Стресс. Бесконечные авралы на работе, бессонница, семейные неурядицы, депрессия — это всё изнуряет, разрушает нас изнутри. В эту же группу попадают люди, которые увлечены экстримом. Или же, когда работа рисковая – пожарные, мчс, полицейские и т.д.
Питание. Еда с изобилием всяких Е и прочих добавок, агрессивная, тяжелая пища – это отличное условие для образования свободных радикалов. А если еще и питаться не по режиму, урывками, а на ночь как следует наесться – вообще самое то.
Экология. К сожалению, такой парадокс: жители больших городов более остро нуждаются в живых, чистых продуктах, свежем воздухе, родниковой воде. А получить все эти блага под силу чаще всего тем, кто живёт в пригороде или что еще лучше, в далёкой деревеньке.
Активный загар. Бронзовая кожа – это, конечно, красиво. Однако если часто солярии посещать, долго находиться под открытым солнцем, страдает кожа, в первую очередь. Рак кожи, молочной железы часто развивается именно у любителей позагорать.
Вредные привычки. Постоянное отравление никотином, алкоголем или, что похлеще, наркотиками. Ну, дальше вы поняли.
https://youtube.com/watch?v=_6nDqcJ1stM
На этом всё, мои дорогие. Желаю вам дружбы со свободными радикалами.
Поделитесь статьёй в соцсетях, мне будет очень приятно.
И не забывайте подписаться на обновления блога.
>
Как защититься от воздействия свободных радикалов
Очевидно, что с годами антиоксидантная защита ослабевает, поэтому стоит задуматься о ее усилении. При этом наивно полагать, что можно питаться фастфудом и вдыхать городской смог, а затем выпить таблетку с антиоксидантом и тем самым нейтрализовать все негативные последствия. Важны комплексный подход и трезвый взгляд на свой образ жизни.
Кроме отказа от вредных привычек, имеет смысл обратить внимание на продукты, богатые антиоксидантами. Темные ягоды, особенно виноград, в кожуре и косточках которого содержится один из чемпионов по антиоксидантной активности — ресвератрол
Считается, что чем насыщеннее цвет ягоды, фрукта или овоща, тем богаче он полифенолами —веществами-антиоксидантами
Темные ягоды, особенно виноград, в кожуре и косточках которого содержится один из чемпионов по антиоксидантной активности — ресвератрол. Считается, что чем насыщеннее цвет ягоды, фрукта или овоща, тем богаче он полифенолами —веществами-антиоксидантами.
Соблюдение правила «5 разных овощей и фруктов в день» — серьезный вклад в собственную антиоксидантную защиту.
Зеленый чай, по мнению многих экспертов, — еще более мощный источник антиоксидантов, чем виноград и полученное из него красное вино.
Жирная морская рыба и разнообразные (именно так) растительные масла.
Косметические средства, обогащенные антиоксидантами, тоже нужны. Конечно, они не повернут время вспять, но им вполне по силам улучшить тургор кожи, сделать ее более гладкой. Кроме того, такие средства незаменимы при повреждениях, воспалениях и некоторых заболеваниях кожи. Например, большинство средств после загара действуют именно благодаря антиоксидантам в составе.
Не стоит бояться свободных радикалов. Лучше ограничить их присутствие в своей жизни, перейти на антиоксидантную диету и заботиться о здоровье.
Строение и стабильность
Свободные радикалы делят на σ-электронные и π-электронные. У σ-электронных радикалов неспаренный электрон расположен на σ-орбитали. Как следствие, атом с неспаренным электроном сохраняет свою гибридизацию, а радикал имеет практически то же строение, что и исходная молекула. К σ-электронным радикалам относятся фенильный (C6H5•), винильный (CH2=CH•) и формильный (HC•=O) радикалы, а также карбоксильный (CO2-•) и пиридильный (C5H5N+•) ион-радикалы. В таких радикалах неспаренный электрон слабо делокализуется. Например, в фенильном радикале спиновая плотность на радикальном центре составляет 0,9918, а существенное взаимодействие наблюдается лишь с орто-протонами.
У π-электронных радикалов неспаренный электрон расположен на p-орбитали, вследствие чего радикальный центр имеет sp2-гибридизацию. Окружающие атомы при этом расположены в узловой плоскости этой орбитали, а радикал имеет вид плоского треугольника или низкой пирамиды с очень малым энергетическим барьером инверсии. К π-электронным радикалам относятся, например, алкильные, аллильные и бензильные радикалы. Из них метильный радикал является плоским, а радикалы CF3• и C(CH3)3• представляют собой низкие пирамиды. Это подтверждается тем, что, например трифторметильный радикал имеет ненулевой дипольный момент (0,43 Д).
Стабильность радикалов рассматривают с термодинамических и кинетических позиций, хотя в большинстве случаев оба вида факторов действуют одновременно. Термодинамическая стабильность радикалов связана с тем, насколько эффективно делокализован неспаренный электрон, поскольку делокализация снижает энтальпию образования свободного радикала. Оценить энтальпию образования радикала можно по энергии диссоциации связи, разрыв которой приводит к образованию этого радикала.
- Ed(A−B)=ΔfH(A⋅)+ΔfH(B⋅)−ΔfH(A−B){\displaystyle {\mathsf {E_{d}(A\!\!-\!\!B)=\Delta _{f}H(A\cdot )+\Delta _{f}H(B\cdot )-\Delta _{f}H(A\!\!-\!\!B)}}}
Как следствие, в ряду алифатических радикалов термодинамическая стабильность изменяется следующим образом:
- (CH3)3C⋅>(CH3)2CH⋅>CH3CH2⋅>CH3⋅.{\displaystyle {\mathsf {(CH_{3})_{3}C\cdot >(CH_{3})_{2}CH\cdot >CH_{3}CH_{2}\cdot >CH_{3}\cdot .}}}
Кинетическая стабильность связана с реакционной способностью радикала по отношению к другим молекулам и радикалам. В первую очередь влияние на кинетическую стабильность оказывает наличие объёмных заместителей около реакционного центра. Если стерические препятствия для подхода реагента к радикалу достаточно велики, то такой радикал может существовать в свободном виде достаточно долгое время. Кинетически стабильные радикалы также называют долгоживущими.
Что такое свободные радикалы
Это молекулы, имеющие в своем составе неспаренные электроны, которые стремятся получить «свою пару», откуда только возможно. Другими словами, они забирают чужие электроны, нарушая тем самым структуру молекул – недавних хозяев «отобранных» электронов.
Существует три вида свободных радикалов: первичные, вторичные и радикалы антиоксидантов.
К первичным относятся радикалы кислорода – супероксид, нитроксид – закись азота и убихиноны – молекулы, входящие в состав ферментов. Эта троица производится внутри нашего организма и работает на наше благо.
В то же время при участии «хорошего» супероксида производятся вредные вторичные радикалы – гидроксил и липидные. Вот они-то и разрушают наши клетки.
К их «разбойничанью» присоединяются неприродные радикалы. Они «штампуются» под воздействием вредного излучения, а также из разных химических соединений, попавших в тело извне.
Наши враги – вторичные и неприродные радикалы. И вот именно с ними надо бороться для сохранения своего здоровья и в рамках здорового образа жизни.
Вред «плохих» свободных радикалов
Они повинны в:
- онкологических заболеваниях;
- болезнях кровеносных сосудов;
- нарушениях функционирования нервной системы и работы мозга;
- воспалительных процессах;
- расстройстве иммунитета;
- мутациях в ДНК и РНК;
- старении организма.
Какую болезнь не назови, во всем повинны вредные свободные радикалы.
Источники свободных радикалов
Чтобы знать, как контролировать, нужно выяснить, откуда берутся эти разрушающие здоровье чрезмерно активные вещества.
- курение табака;
- напичканные химией продукты питания;
- загрязненный воздух;
- бесконтрольный прием лекарств;
- ультрафиолетовое излучение (излишнее загорание под солнцем, солярии);
- электромагнитное излучение (рентген, высоковольтные линии, РЛС, вышки мобильной связи и т.д.);
- стрессы;
- жареная еда.
Свободнорадикальные выводы
1) Они присутствуют в наших организмах, независимо от нашего желания.
2) Непрерывно производятся и распадаются.
3) Чтобы уберечься от вредного воздействия, нужно прекратить всякие контакты с источниками «плохих» радикалов или хотя бы их минимизировать.
4) Полезно употреблять в пищу продукты, богатые природными антиоксидантами, защищающими клетки. Антиоксидант – вещество, легко отдающее свои электроны вместо «наших» молекул (подробно, что такое антиоксиданты).
—————————
Свободные радикалы – обязательное условие игры под названием «жизнь». И мы для сохранения здоровья должны принять эти условия и по возможности приспособиться к ним, чтобы как можно дольше длилась партия.
Свободные радикалы в организме человека наносят вред
Научные исследования показывают, что образование активного кислорода в организме человека происходит постоянно. За одни сутки образуются миллиарды молекул-хищников с непарным электроном, которые обладают определенными свойствами.
Они вступают в реакции, рыскают в надежде оторвать или напротив, подсунуть повстречавшейся своей соседке свою частицу, тем самым вызывая дополнительную реакцию нарушения молекул. А клетки с поврежденными мембранами или с поврежденной структурой ДНК погибают.
Если же происходит быстрый рост молекул активного кислорода, они продолжают порождать их еще больше. Это действие наносит существенный ущерб организму, изменяя структуру белков, нарушая генетическую информацию. А белки с нарушенной цепочкой, сразу распознаются иммунными клетками, которые стремятся их уничтожить.
При физической или умственной нагрузке организм потребляет больше кислорода, что приводит к образованию АФК. Но также на их количество оказывают влияние другие факторы, такие как курение, употребление алкоголя, жареной пищи, плохая экология, воздействие рентгеновского или радиоактивного излучения.
Порой, из-за большого объёма работы иммунитет не в силах справиться с этим процессом, он ослабевает. И на фоне падения иммунитета развиваются заболевания: нарушения мозговой деятельности, заболевания глаз, почечная, печёночная и сердечная недостаточность и даже более серьезные болезни, такие как лейкемия и рак.
Активные формы кислорода, ломая клеточные мембраны, нарушают водно-солевой баланс в организме, обменные процессы и во внутренних органах и в коже, что ведет к быстрому старению. Ученые уверяют, что активные формы кислорода могут вызывать до 80 видов разных болезней.
Влияние активных форм кислорода на ДНК
Клетки ДНК хранят в себе важную информацию о человеке, которая передается по наследству. Радикалы, по данным ученых бомбардируют эти клетки до 10 000 раз в день. Нарушение состава молекул ДНК приводит к развитию онкологических заболеваний. Способно вызвать инфаркт, или другие болезни, ведущие к летальному исходу.
Влияние АФК на сердце и сосуды
Интенсивные атаки активных форм кислорода губительны и для сердечной системы человека. Когда разрушаются мембраны клеток, составляющих кровь. Она густеет, что ведет к образованию тромбов и развитию атеросклероза.
Влияние АФК на дыхательную систему
Лёгкие и дыхательная система находятся в непосредственном контакте с поступающим кислородом, который преобразуется в активные формы. Да и в загрязнённом воздухе много АФК, ведущих к негативным последствиям. Учёные считают, что лёгочные клетки являются самыми незащищенными для окисления.
Влияние АФК на жиры
Жиры быстрее всего поддаются окислению. А жирные кислоты ненасыщенные являются частью клеток диафрагмы печени. При воздействии активного кислорода происходит окисление, что вызывает заболевание печени.
Влияние АФК на содержание сахара в кров
Ученые экспериментально на мышах доказали, что повышение сахара в крови зависит от процесса окисления крови активными формами кислорода. В эксперименте им вводили в кровь аллоксан, являющийся сильным окислителем.
И вскоре после введения вещества начинают множится частицы с неспаренными электронами и уже через 3 дня начинают гибнуть bеtа-клетки, что является признаком диабета первого типа.
Вред, наносимый здоровью
Какой именно вред свободные радикалы наносят человеку? В свободном перемещении они способны вызывать различные заболевания в организме, а также от большого количества их содержания напрямую зависит образование онкологических заболеваний. На сегодняшний день известно, что роль свободных радикалов на образование рака, инфарктов, инсультов, быстрое старение организма самая непосредственная.
Наиболее выражено такое влияние на коже человека. Они поражают клетки коллагена, составляющих каркас кожного покрова и обеспечивающего его эластичностью, вызывая появление многочисленных морщин и общего увядания. Еще одним негативным фактором влияния на человека является повреждение и нарушение здорового иммунитета. В следствие чего организм перестает сопротивляться вредным воздействиям окружающей среды и поступающим инфекциям как извне, так и изнутри. В этом случае чем старше возраст, тем больше риск появления серьезных заболеваний, связанных с наличием свободных радикалов в организме, так как с возвратом иммунитет значительно ослабляется, а их воздействие не дает происходить восстановлению защитных систем, не позволяя справляться со своими функциями.
Продолжая поступать в организм они приводят ко все большим и большим нарушениям в работе, а также приводят к появлению многих заболеваний и патологий. Еще одними признаками быстрого старения организма, вызывающиеся свободными радикалами, являются ослабление мышц и скелета человека, потеря эластичности всех кожных покровов, ослабление в работе органов слуха и зрения, а также значительных нарушениях психических процессов, происходящих в системах человека.
Регулярные атаки окислителей на клетки нашего организма ослабляют и истощают их собственные запасы энергии и питательных веществ. В этом случае клетка разрушается и отмирает. Именно, когда молекула больше не способна сопротивляться она сдаётся под воздействием свободного радикала и проникая в ее оболочку он достигает нити ДНК, вызывая необратимые изменения, которые в конечном итоге приводят к образованию раковой клетки.
Свободные радикалы в организме и их польза
Мы привыкли слышать только о вреде, который радикалы приносят человеку, вызывая процессы окисления и раннего старения. Но оказывается, они имеют полезные свойства и жизнь человека тесно связана с ними.
Молекулы с непарными электронами:
- Принимают участие в обеспечении сохранности генетического аппарата, участвуют в делении клеток и передаче гормональных и клеточных сигналов, в передаче импульсов, исходящих от нервов.
- Их действие тесно связано с иммунной системой, клетки которой способны распознавать вирусы и микробы и организовываться на борьбу с ними.
- Участвуют в активизации некоторых ферментов и производстве энергии.
Ученые говорят, что без активных молекул кислорода организм человека совершенно будет незащищённым от инфекций, потому как они способствуют уничтожению флоры патогенной в организме.
А еще, равно как они могут вызывать онкологию, так они и защищают нас от мутированных клеток и опухолевых. Ведь, рыская в поиске недостающего электрона, они в первую очередь нападают на слабые или мутированные клетки.
Получается, что внутри нашего организма молекулы агрессивного кислорода выполняют роль хищника, идет невидимый естественный отбор, как в природе, где погибают слабые клетки, а сильные продолжают жить.
Как нейтрализовать вредное действие свободных радикалов
Ученые давно занимаются этим вопросом, от решения которого зависит продолжительность жизни человека. Использование сильных антиокислителей (антиоксидантов) – вот то средство, которое они предлагают сегодня. Испробованные на лабораторных животных, антиоксиданты позволили увеличить продолжительность их жизни на 40-50%.
Организм человека способен самостоятельно вырабатывать антиокислители, которых вполне хватает, пока условия жизни не сопряжены со стрессами и вредным воздействием окружающей среды. К таким антиоксидантам относится протеин глутатион, который вырабатывается в печени из аминокислот. Он способен снижать вред от действия наркотиков, курения и радиационного облучения на организм, нейтрализует последствия химиотерапии в лечении онкологических заболеваний, выводит токсины, попадающие в организм вместе с алкоголем, нейтрализует действие тяжелых металлов, что способствует излечению в случае болезней крови и печени. Его действие начинается еще до того, как свободные радикалы могут начать свое разрушающее влияние, глутатион вместе с селеном образует фермент, который нейтрализует образовавшуюся под их действием перекись водорода.
К группе антиоксидантов, которые человек может получить вместе с пищей, относятся витамины: А, С и Е, бета-каротин, куэнзим Q10, микроэлементы: селен, цинк, цистеин; гормоны: мелатонин. Высокими аниоксидантными свойствами обладают некоторые растения: гинко билоба, черника, вытяжка из косточек винограда, зеленый чай, пророщенные зерна сои и пшеницы, свежие овощи и фрукты.
Кроме этого, есть вещества, способные усилить антиокислительное действие витаминов и глутатиона, например, альфа-липоевая кислота, которая также является важным компонентом, обеспечивающим выработку ферментов, превращающих пищу в энергию.
Чем больше открытий происходит в бьюти-индустрии, тем лучше мы, пользователи косметики, должны разбираться в научных терминах. Хотя бы затем, чтобы по достоинству оценить инновационные формулы кремов и понять, какую важную работу они выполняют для нашей кожи. Начнем со свободных радикалов.
- Что такое свободные радикалы
- Действие свободных радикалов
- Свободные радикалы в организме человека
- Как бороться со свободными радикалами в организме
- Свободные радикалы и антиоксиданты
- Как защититься от воздействия свободных радикалов
- Обзор продуктов с антиоксидантами