Гидростатическое давление

Содержание:

Как определить?

Узнать ГДВ в требуемой точке возможно с помощью уравнения, которое называется: основное уравнение гидростатики. Выражено оно в виде:

 P = P0 + yh,

где:

  • P0 – давление на внешней поверхности жидкости (атмосферное);
  • y – удельный вес воды;
  • h – высота водного столба (глубина).

Показательно, что ГДВ в заданной точке будет равно величине, состоящей из суммы значений: вес атмосферного столба и вес водного слоя. Наименование у этого параметра – полное давление.

Если на водную поверхность давит сила, которая больше атмосферной нагрузки, то такой вид воздействия будет именоваться, как избыточное давление. Он выражается разностью между полным и атмосферным давлением:

 Pизб = Pполн — Pатм

Пояснительным примером может послужить компрессор холодильника, который создает избыточное сжатие  газа в герметичной камере.

Регулировка

В частных домах для регулирования уровня напора только проточного насоса недостаточно. Требуется насосная станция или гидроаккумулятор. В этих приборах проводят настройку реле давления воды.

В насосной станции

Здесь за регулировку отвечает реле, которое отключает или включает устройство так, как было описано выше.

Главные его элементы – это закрепленные на металлическом основании контакты.

Чаще всего для работы устройства используются две разные по размеру пружины и мембрана.

У реле часто уже бывают выставлены фабричные настройки.

Для включения это показатель в 1,5-1,8 атмосфер,  а для отключения – уровень 2,5-3 атмосферы. И есть максимальный предел в 5 атмосфер, но на практике его не всякое реле выдерживает. В большинстве случаев заводские настройки обеспечивают нормальную работу. Если нет – надо выставить их вручную.

Сначала проверяют работу системы и уровень напора воздуха в гидроаккумуляторе. После запуска станции давление восстанавливается, его измеряют и фиксируют, питание оборудования отключают, воду из системы спускают. Иногда нужно уменьшить давление.

С реле снимают пластиковый корпус, затягивают гайку большой пружины, закручивая ее по направлению движения часовой стрелки, пока пружина не сожмется до соответствующего уровня.

Вращение маленькой гайки в том же направлении увеличивает разрыв между параметрами для включения и выключения. Положение фиксируют, корпус возвращают на место.

В гидроаккумуляторе

Бак, который используется в насосной станции, называется гидроаккумулятором. Помимо всего прочего, он обеспечивает определенный запас воды. Его работа регулируется реле. За уровнем воды в гидроаккумуляторе следит поплавковый датчик.

Реле здесь устроено так же, как в насосной станции. И настраивают его точно так же. То есть сначала проверяют работу системы, измеряют напор с помощью манометра, затем воду сливают, снимают корпус с устройства, с помощью гаек подстраивают показатели.

Вся информация по регулировке здесь.

Как узнать показатель давления?

Определить показатели в системе можно как с помощью манометра, так и без использования прибора.

При помощи манометра

Существуют два варианта измерения напора в водопроводе. Первый вариант – постоянный контроль. Он предполагает стационарную установку манометра во вводном узле. Для этого устанавливают манометры на трубах горячего и холодного водоснабжения.

Еще один важный момент – манометры подключают после грубого очистного фильтра. Если владелец жилья хочет поставить еще фильтры тонкой очистки, то стоит поискать устройства, уже оснащенные манометрами. И еще – эти приборы устанавливают перед счетчиками расхода.

Второй вариант – это периодический контроль. Для этого нужно:

  1. Приобрести необходимое оборудование. В данном случае — это бытовой манометр, насадка на кран (с одной из сторон она должна быть оснащена штуцером), подходящий по диаметру резиновый шланг.
  2. Насадка устанавливается на кран, шланг подсоединяется к штуцеру одним концом, а второй должен быть подключен к входному отверстию измерительного прибора.
  3. Все соединения, имеющиеся в этой схеме, нужно надежно затянуть с помощью хомутов, чтобы не было прорыва под сильным напором.
  4. Открывают кран на максимум, чтобы измерить напор, и фиксируют полученный показатель.

Можно ограничиться упрощенной схемой. Для этого надо снять лейку с душевой смесителя и подключить к шлангу манометр.

Без манометра

Справиться с измерением можно и без манометра. Для этого понадобиться только шланг из прозрачного ПВХ.

Алгоритм такой:

  • Шланг с одной стороны подключают к интересующей владельца точке водоразбора и фиксируют так, чтобы он был направлен вертикально.
  • Открывают кран, и шланг начинают заполнять водой, пока она не достигнет уровня, соответствующего нижней точке крана. Одновременно верхнее отверстие герметично закрывают.
  • Водопроводный кран открывают на максимум.
  • Измеряют высоту водяного столба от уровня, установленного как нулевой до начала воздушной пробки. Высоту пробки тоже нужно измерить.

Складывают высоту столба с высотой пробки и делят на высоту пробки. Полученное значение нужно умножить на атмосферное давление, но оно в данном случае принимается равным 1 атм.

Подробная статья об измерении давления без прибора здесь.

Минимальные и максимальные показатели

Для технических целей нужно знать наименьшее и наибольшее значение показателей в системе водоснабжения.

В данном случае минимум для давления составляет 1 атмосферу. Именно такого уровня достаточно для того, чтобы обеспечить «самотек», то есть движение за счет одной только гравитации.

Максимальное давление в водопроводной системе ограничено техническими характеристиками ее компонентов, например, производительностью насосов.

В магистральных водопроводах в городских условиях этот показатель составляет 7-10 атмосфер, но в квартире он будет ниже – 6-7 атмосфер, и примерно столько же – в загородных домах.

Пошаговая инструкция, как измерить самостоятельно

Хозяин частного дома должен иметь полную информацию о работе водоснабжения, но и владельцу квартиры тоже стоит иногда проводить замеры показателей. Монтаж приборов прост, не занимает много времени. Избежать ошибок поможет пошаговое руководство по измерению давления без помощи специалистов.

С манометром

Монтаж стационарного манометра занимает 1-3 часа. После распаковки и изучения схемы сборки можно приступать к работе:

  1. Демонтируется участок трубы. В зависимости от конфигурации, это можно сделать болгаркой или разводным ключом.
  2. Собирается участок водопровода вместе с измерительным прибором.
  3. Его присоединяют к системе.
  4. Делают тестовый пуск. Проверяют на наличие подтеков.

Переносной манометр собрать намного быстрее и легче. Это займет менее часа:

  1. Соединяют корпус с переходником.
  2. Отсоединяют один из шлангов, который идет к смесителю или душевой лейке.
  3. Подключают на его место измерительное оборудование.

Без измерителя

Если нет возможности купить измерительное оборудование, то можно воспользоваться содержимым кладовки.

Первый вариант – с помощью обычной трехлитровой банки. Для этого необходимо просто засечь, через какое время вода дойдет до горлышка:

  • 8 секунд – 0.3 атмосферы;
  • 1 секунда – более 5 атмосфер.

Второй вариант – прозрачный шланг. Это способ включает в себя расчет, так что стоит запастись карандашом, бумагой:

  1. Герметично соединяют шланг в вертикальном положении со смесителем.
  2. Заполняют водой изгиб внизу конструкции (нулевой уровень).
  3. Закупоривают верх шланга.
  4. Открывают воду на максимум.
  5. Через 2 минуты измеряют расстояние от нулевого уровня до верхней границы воды (a). И от неё до пробки(b).
  6. Производят расчет по формуле: (давление) = 1 x (a+b) / b.

Особых трудностей ни один из предложенных способов вызвать не должен. Стоит произвести повторные измерения, чтобы исключить возможность ошибки. Полученные данные будут нужны, когда придет время выяснять причины неполадок.

Когда бурятся скважины: нюансы

Схемы скважин при ударно канатном бурении.

Таким образом будет сэкономлено немало денежных средств и времени. Вода в скважине сделает строительство более удобным, не нужно будет заниматься поиском водяного источника.

Для начала работ нужно сделать точную планировку местонахождения всех объектов. Выполнить расчет площади участка, учесть все нюансы. Конечно, можно пробурить скважину и для уже построенного дома. Сегодня очень много организаций, которые специализируются на организации водоснабжения в любых условиях. Такие работы выполняются на специальном техническом оборудовании.

Сколько составляет на различных глубоководных участках?

Если какой-либо объект поместить в воду на один метр, то он будет испытывать на себе силу, равную 0,1 атм.

Предмет, погруженный на 2 м, уже станет испытывать прессинг величиной около 0,2.

С каждым последующим метром показатель будет возрастать на 0,1 атм. При 5 м значение равняется 0,5. При 10 оно будет уже равняться 1. Более точное число равняется 0,97 атмосферы.

На глубоководье водная толща становится сжатой. Ее плотность увеличивается. Уже на 100 м сила будет практически равняться 10. Более точное число составляет 9,7.

На глубинном участке в 1 км водная среда будет сдавливать находящиеся в ней объекты примерно со значением в 97 атм. Поскольку при 100 м величина равна 9,7, то на 1000 м она увеличивается в 10 раз.

Изменение показателя на разных глубоководных участках представлено в таблице.

Глубина, на которую объект погружается в воду, в метрах Давление в атмосферах.
1 0,10
2 0,19
3 0,29
4 0,39
5 0,49
10 0,97
15 1,46
25 2,43
50 4,85
100 9,70
200 19,40
250 24,25
500 48,50
1000 97

При первых 10 метрах прирост невысокий и составляет 0,1 атмосферы. Дальше его показатель увеличивается.

Физика для средней школы

Гидростатическое давление

Рассмотрим равновесие однородной жидкости, находящейся в поле тяготения Земли.

На каждую частицу жидкости, находящейся в поле тяготения Земли, действует сила тяжести. Под действием этой силы каждый слой жидкости давит на расположенные под ним слои. В результате давление внутри жидкости на разных уровнях не будет одинаковым. Следовательно, в жидкостях существует давление, обусловленное ее весом.

Давление, обусловленное весом жидкости, называют гидростатическим давлением.

Для количественного расчета мысленно выделим в жидкости малый объем цилиндрической формы, расположенный вертикально, сечением S и высотой h (рис. 1). В случае неподвижной жидкости вес этого цилиндра, а значит, и сила давления на площадку S в основании будет равна силе тяжести

Рис.1

Тогда давление на площадку

— гидростатическое давление, где —

плотность жидкости, h — высота столба жидкости. Таким образом, гидростатическое давление равно весу столба жидкости с единичным основанием и высотой, равной глубине погружения точки под свободной поверхностью жидкости.

Графически зависимость давления от глубины погружения в жидкость представлена на рисунке 2.

Рис. 2

Давление жидкости на дно не зависит от формы сосуда, а определяется только высотой уровня жидкости и ее плотностью. Во всех случаях, приведенных на рисунке 3, давление жидкости на дно сосудов одинаково.

Рис. 3

Жидкость давит на данной глубине одинаково по всем направлениям — не только вниз, но и вверх, и в стороны.

Следовательно, давление на стенку на данной глубине будет таким же, как и давление на горизонтальную площадку, расположенную на той же глубине.

Если над свободной поверхностью жидкости создается давление p то давление в жидкости на глубине будет

Обратите внимание на различие выражений: «давление жидкости на глубине h» и «давление в жидкости на глубине h». Это надо учитывать при решении различных задач

Силы давления на дно и на стенки можно рассчитать по формулам

— сила давления жидкости на горизонтальное дно, где Sд — площадь дна;

— сила давления жидкости на боковую прямоугольную вертикальную стенку сосуда, где Sст — площадь стенки.

В покоящейся жидкости свободная поверхность жидкости всегда горизонтальна.

Нередко встречаются случаи, когда жидкость, покоясь относительно сосуда, движется вместе с ним. Если при этом сосуд движется равномерно и прямолинейно, то свободная поверхность жидкости будет горизонтальна. Но если сосуд движется с ускорением, то ситуация меняется и возникают вопросы о форме свободной поверхности жидкости, о распределении давления в ней.

Так, в случае горизонтального движения сосуда с ускорением в поле тяготения Земли любая часть жидкости массой m движется с тем же ускорением под действием равнодействующей силы давления , действующей со стороны остальной жидкости и силы тяжести (рис. 4).

Рис. 4

Основное уравнение динамики:

В результате свободная поверхность жидкости не будет горизонтальна, а образует с горизонтом угол , который можно легко найти, если спроецировать основное уравнение динамики на горизонтальную и вертикальную оси

Отсюда

Давление на горизонтальную поверхность (горизонтальное дно) будет возрастать в направлении, противоположном ускорению.

Зависимость двух физических показателей

С каждым последующим опусканием на 10 м воздействие становится больше на 1 атмосферу. Уже при погружении на 100 метров тела испытывают давление, соизмеримое с тем, что создается в паровом котле.

С погружением общее давление как на человека, так и на любой другой объект, возрастает. На 10 м оно становится больше вдвое.

Прирост давления на глубоководье неодинаков:

  • На 10 м прирост составляет 100%.
  • На 20 м он уже уменьшается вдвое (50%).
  • На 40 он падает до 25%.
  • На 60 он уже меньше 20% и составляет 17%.

В воде помимо атмосферного давления возникает еще гидростатический прессинг. Он также называется избыточным. При нахождении в воде любой объект будет испытывать уже сумму двух давлений: атмосферного и избыточного.

Зависимость двух величин напрямую прослеживается при изучении состояния человека, находящегося в условиях глубоководья. Если поместить человека в глубоководную среду, то он не сможет сделать полноценный вдох.

Теплоноситель в статическом и динамическом состояниях

Теплоноситель любой системы отопления может находиться в двух состояниях:

  • неподвижном (статическом), когда отсутствует нагрев в гравитационной системе (отсутствует естественная циркуляция) или выключен циркуляционный насос в системе с принудительной циркуляцией;
  • подвижном (динамическом), вызываемом такими причинами:
    • естественной циркуляцией теплоносителя, побуждаемой градиентом давления вследствие неравномерности прогрева рабочей жидкости вдоль контура гравитационной системы отопления;
    • принудительной циркуляцией теплоносителя, побуждаемой циркуляционным насосом;
    • тепловым расширением теплоносителя, побуждающим его вытеснять воздух/газ из расширительных баков, занимая освободившиеся объемы.

Неподвижный теплоноситель оказывает на внутренние поверхности элементов системы только (гидро)статическое давление, изучаемое гидростатикой. Движущийся теплоноситель характеризуется (гидро)динамическим давлением, изучаемым гидродинамикой. Оно складывается из статической составляющей, затем части, определяемой тепловым расширением жидкости, наконец составляющей, создаваемой т.наз. скоростным напором движущейся жидкости. Далее, рассматривая движущийся нагретый теплоноситель, будем использовать термин рабочее (результирующее) давление.

Гидростатический парадокс

Основная статья: Гидростатический парадокс

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля

Основная статья: Закон Паскаля

Чем глубже, тем выше давление. (левая часть графика)

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:

p(h)=ρgh{\displaystyle p(h)=\rho \,g\,h}

где:

ρ{\displaystyle \rho } — плотность [для пресной воды: ρ ≈ 1000 кг/м³]
g{\displaystyle g} — ускорение свободного падения [для Европы: g ≈ 9,81 м/с²]
h{\displaystyle h} — высота (здесь: жидкости)
p{\displaystyle p} —

⇒ p(h){\displaystyle p(h)} = гидростатическое давление (p) зависит от высоты (h) жидкости.

Наиболее распространенные приборы для измерения давления

Несмотря на то что высчитать рассматриваемую термодинамическую величину по вышеупомянутым формулам не сложно, проводить вычисление иногда попросту нет времени. Ведь нужно всегда учитывать многочисленные нюансы. Поэтому для удобства за несколько столетий был разработан ряд приборов, делающих это вместо людей.

Фактически почти все аппараты такого рода являются разновидностями манометра (помогает определять давление в газах и жидкостях). При этом они отличаются по конструкции, точности и сфере применения.

  • Атмосферное давление измеряется с помощью манометра, именуемого барометром. Если необходимо определить разряжение (то есть давление ниже атмосферного) — применяются другая его разновидность, вакуумметр.
  • Для того чтобы узнать артериальное давление у человека, в ход идет сфигмоманометр. Большинству он более известен под именем неинвазивного тонометра. Таких аппаратов существуют немало разновидностей: от ртутных механических до полностью автоматических цифровых. Их точность зависит от материалов, из которых они изготавливаются и места измерения.
  • Перепады давления в окружающей среде (по-английски — pressure drop) определяются с помощью дифференциальных манометров или дифнамометров (не путать с динамометрами).

Гидростатический парадокс

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние каждой такой частицы от свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля

Чем глубже, тем выше давление.

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести (= несжимаемая жидкость) подчиняется закону Паскаля:

p(h)=ρgh{\displaystyle p(h)=\rho \,g\,h}

где:

ρ{\displaystyle \rho } — плотность [для пресной воды: ρ ≈ 1000 кг/м³]
g{\displaystyle g} — ускорение свободного падения [для Европы: g ≈ 9,81 м/с²]
h{\displaystyle h} — высота (здесь: жидкости)
p{\displaystyle p} —

⇒ p(h){\displaystyle p(h)} = гидростатическое давление (p) зависит от высоты (h) жидкости.

Гидростатическое давление[править | править код]

Основной закон гидростатики, открытый Паскалем, формулируется следующим образом: приложенное к поверхности жидкости внешнее давление передается жидкостью по всем направлениям одинаково. Если на поверхность воды не действует избыточное давление, т.е. давление на поверхности равно атмосферному давлению, то сила, с которой вода давит на помещенное в нее тело, равна весу столба воды, находящегося над ним.

Силы давления воды всегда направлены перпендикулярно к любой части погруженного тела и увеличиваются с глубиной его погружения. Поскольку удельный вес воды равен 1 гс/см3, а величина гидростатической силы равна весу жидкости, действующему на поверхность тела, нетрудно определить ее величину, зная глубину погружения тела. Например, если грудная клетка тела человека имеет размеры по высоте 50 см, а по окружности 100 см, то общая площадь ее будет равна 5 000 см2.

Представим, что вы погрузились на глубину 1 м (или 100 см) по средней линии туловища. На такой глубине на каждый квадратный сантиметр поверхности грудной клетки будет действовать гидростатическая сила, равная весу столба воды высотой 100 см. Если удельный вес пресной воды равен 1 гс/см3, то общий вес столба воды, действующий на поверхность площадью 1 см2, равен 100 гс. Таким образом, гидростатическая сила на глубине 1 м будет равна 100 гс/см2. Для определения суммарного гидростатического давления на грудную клетку на глубине 1 м необходимо умножить вес столба, действующего на поверхность площадью 1 см2, на площадь поверхности грудной клетки:

100 гс • 5 000 см2 = 500 000 гс/см2, или 500 кгс/см2.

Такое давление уже не позволяет на глубине 1 м сделать вдох через трубку. При погружении на глубину 2 м давление воды удвоится и станет равным 1 000 кгс , или 1 тс, при погружении на 10 м — 5 тс и т.д.

Такие величины гидростатического давления легко переносятся человеком, так как большинство частей тела на 70—80 % состоит из воды, не сжимаемой под действием давления. Однако грудная клетка, наполненная сжимаемым воздухом, слуховой анализатор, в среднем ухе которого также находится воздух, не безразличны к таким величинам гидростатического давления. Поэтому любому занимающемуся плаванием необходимо знать, что не всегда легочная ткань, барабанные перепонки способны выдерживать деформации от гидростатического давления, особенно если этими органами были ранее перенесены заболевания.

Разница между гидростатическим и онкотическим давлением

Определение

Гидростатическое давление: Гидростатическое давление относится к силе, которую оказывает жидкость внутри кровеносных капилляров на стенку капилляра.

Онкотическое давление: Онкотическое давление относится к силе альбумина и других белков в кровеносных сосудах.

Механизм

Гидростатическое давление: Гидростатическое давление выталкивает жидкости из кровеносных капилляров.

Онкотическое давление: Онкотическое давление выталкивает жидкости в кровеносные капилляры.

Вхождение

Гидростатическое давление: Гидростатическое давление возникает в результате давления крови внутри капилляров.

Онкотическое давление: Онкотическое давление возникает из-за белков, таких как альбумин, глобулины и фибриногены внутри кровеносных капилляров.

Количество

Гидростатическое давление: Гидростатическое давление составляет около 30 мм рт.

Онкотическое давление: Онкотическое давление составляет около 20 мм рт.

Тип

Гидростатическое давление: Гидростатическое давление — это тип давления жидкости.

Онкотическое давление: Онкотическое давление является типом коллоидного давления.

Вхождение

Гидростатическое давление: Гидростатическое давление возникает на артериальном конце кровеносных капилляров.

Онкотическое давление: Онкотическое давление возникает в венозном конце кровеносных капилляров.

Роль

Гидростатическое давление: Гидростатическое давление увеличивает фильтрацию.

Онкотическое давление: Онкотическое давление не позволяет жидкости покинуть кровеносные капилляры.

значение

Гидростатическое давление: Гидростатическое давление способствует поступлению питательных веществ в ткани организма.

Онкотическое давление: Онкотическое давление помогает удалить метаболические отходы из тканей.

Заключение

Гидростатическое давление и онкотическое давление являются двумя типами сил, участвующих в движении жидкости в кровеносных капиллярах. Из-за насосного давления сердца в артериальном конце кровеносных капилляров возникает высокое гидростатическое давление, вызывающее движение жидкости из крови в интерстициальную жидкость. На конце вен, большие белки создают коллоидное давление внутри кровеносных капилляров. Это вызывает движение жидкости в кровеносные капилляры из интерстициальной жидкости. Основное различие между гидростатическим давлением и онкотическим давлением заключается в их механизме и роли.

Физические свойства

У давления воды есть разные физические свойства. Какие?

На глубине

При погружении на глубину давление воды будет расти. Здесь используется такая формула:

Р = ρ × g × h, причем:

  1. ρ – это плотность воды,
  2. g – средний показатель ускорения для свободного падения, который принимают равным 9,81 с/ кв.с (или даже 10 – для грубых подсчетов),
  3. h – глубина, для которой и выполняются расчеты.

Температура замерзания воды под давлением

В целом с повышением давления температура замерзания падает, вплоть до отрицательных температур. Например, при показателе в 2 атм вода замерзает уже не при 0°С, а при –2°С, а при давлении 3 атм – при –4°С.

Сила

Из школьного курса известно, что это понятие отражает такое явление, как силу, которое вода, налитая в сосуд, оказывает на его дно. То есть сила считается как вес водяного столба определенной высоты с площадью основания такой же, как у этого сосуда.

Детально о силе давления читайте здесь.

Как зависит расход H2O от напора и диаметра трубы

Формула зависимости достаточно сложна. Но в общих чертах можно сказать, что чем меньше диаметр трубы, тем выше сопротивление ее стенок и тем ниже давление.

Таким образом, при большем диаметре водопроводных труб вода транспортируется быстрее и с меньшей потерей напора, но и расход получается выше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector